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Week 9

0.1 Differentiation (Contd.)

Theorem 0.1 (Rolle’s Theorem)

Let f be continuous over [a, b] and differentiable over (a, b). If f(a) = f(b) then

there is a point c ∈ (a, b) with f ′(c) = 0.

Proof

f continuous over [a, b] ⇒ f has a maximum value and a minimum value in

[a, b].

The possibilities are:

• The maximum and/or minimum value occurs in (a, b) ⇒ there is c ∈ (a, b)

with f ′(c) = 0. (This is a theorem that we proved above.)

• The maximum and minimum values both occur at an end point.

But since f(a) = f(b) then the maximum and minimum values are both the

same in this case. This means that f is constant over (a, b) ⇒ f ′(x) = 0, ∀x ∈
(a, b).

0.1.0.1 Applications of Rolle’s Theorem:.

Let f(x) = x5 + x3 − 3. We can use the IMVT to prove that f has a root in
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the inverval [1, 2] because f(1) = −1, f(2) = 37. We can use Rolle’s theorem

to prove that f does not have a second root in [1, 2] because, if there were two

roots, say, c1 and c2 then we would have f(c1) = f(c2) and then Rolle’s theo-

rem would imply that there was some point c between c1 and c2 with f ′(c) = 0.

But f ′(x) = 5x4 + 3x2 which is always positive over (1,2).

The important theorem known as the Mean Value Theorem is proved using

Rolle’s Theorem.

Theorem 0.2 (Mean Value Theorem)

Let f be continuous over [a, b] and differentiable over (a, b). There is a point

c ∈ (a, b) with:

f ′(c) =
f(b)− f(a)

b− a

b

b

c

(a, f(a))

(b, f(b))

Slope of the tangent = f ′(c)

Slope of this line =
f(b)− f(a)

b− a

Proof

The equation of the line joining the points (a, f(a)) and (b, f(b)) is

y − f(a) =
f(b)− f(a)

b− a
(x− a)
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i.e.

y = f(a) +
f(b)− f(a)

b− a
(x− a).

Let

g(x) = f(x)− f(a)− f(b)− f(a)

b− a
(x− a).

Now g is continuous over [a, b] and differentiable over (a, b) with:

g(a) = f(a)− f(a)− f(b)− f(a)

b− a
(a− a) = 0

and

g(b) = f(b)− f(a)− f(b)− f(a)

b− a
(b− a) = f(b)− f(a)− (f(b)− f(a)) = 0

That is, g(a)=g(b).

Therefore by Rolle’s Theorem there is c ∈ (a, b) with g′(c) = 0.

And since g′(x) = f ′(x)− f(b)− f(a)

b− a
, this gives g′(c) = f ′(c)− f(b)− f(a)

b− a
= 0

That is, f ′(c) =
f(b)− f(a)

b− a
.

0.1.0.2 Application of the Mean Value Theorem:.

It is easy to show that if a function f is constant over an interval (a, b) then

f ′(x) = 0, ∀x ∈ (a, b).

We can now show that the converse of this is also true:

Theorem 0.3

If f ′(x) = 0, ∀x ∈ (a, b) then f is constant over (a, b).

Proof

Pick any two points x1 and x2 in the interval (a, b) and we can show that

f(x1) = f(x2) as follows:

Taking it that x1 < x2 we have that f is continuous over [x1, x2] and differ-

entiable over (x1, x2) and so, by the Mean Value Theorem there is a point

c ∈ ((x1, x2) such that

f ′(c) =
f(x2)− f(x1)

x2 − x1
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But f ′(c) = 0 because f ′(x) = 0 ∀x ∈ (a, b) and so

0 =
f(x2)− f(x1)

x2 − x1

⇒ f(x1) = f(x2).

Therefore, f is constant over (a, b).

Corollary 0.4

If f ′(x) = g′(x) for all x ∈ (a, b) then there is some constant c with f(x) =

g(x) + c.

0.1.1 Inverse Functions

Some functions can be inverted unambiguously. That is, given y we can find x

such that f(x) = y.

Example 0.5

Let f(x) = 3x− 2.

Then y = 3x− 2 ⇒ x = 1

3
y + 2

3
.

This gives us another function g(y) = 1

3
y + 2

3
.

g and f are said to be inverses of one another and have the defining feature

that f(g(y)) = y and g(f(x)) = x. g is frequently denoted as f−1.

The following arrow diagram illustrates the relationships between the domain

and range of f and the domain and range of f−1

f

f−1

Domain of f

Range of f−1 Domain of f−1

Range of f

Not every function has an inverse.
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Example 0.6

Let f(x) = x2.

Then y = x2 ⇒ x = ±√
y.

And, except in the case y = 0, there are two x’s matched with each y and we

do not have an inverse functon.

2

4

6

8

1 2 3−1−2−3

f(x) = x2

b b(−2, f(−2)) (2, f(2))

However, a function defined by the same formula but a different domain may

have an inverse.

Example 0.7

Let f(x) = x2, x ∈ [0,∞)

then y = x2 ⇒ x =
√
y because only positive x’s are in the domain of this

function.

2

4

6

8

1 2 3−1−2−3

f(x) = x2

b (2, f(2))
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It is clear that a funtion has an inverse if and only if it is one-to-one or injective,

that is, each x is matched with a distinct y.

Example 0.8

If n is an odd positive integer, the function xn is injective and has inverse x
1

n

If n is an even positive integer, the function xn, x ∈ [0,∞) is injective and has

inverse x
1

n , x ∈ [0,∞)

Properties of inverse functions:

Let f be injective with inverse f−1.

(i) f(f−1)(x) for all x in the domain of f−1 and

f−1(f(x)) = x for all x in the domain of f .

(ii) If f is continuous at a ∈ R then f−1 is continuous at f(a).

(iii) The graph of f−1 is the reflection of the graph of f in the line y = x.

Proof
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b

b (a, b)

(b, a)

a

b

b

a

y = x

Beginning with any point (a, b) not on the line y = x, construct a square,

as above, one of whose diagonals is part of the y = x line.

It is then clear that the other diagonal of the square joins the points (a, b)

and (b, a). Since these two diagonals bisect one another perpendicularly,

it follows that (b, a) is the reflection of (a, b) in the line y = x.

If this is done for every point on the graph of f it will result in the the

graph of f−1.

(iv) If f is differentiable at a ∈ R then f−1 will be differentiable at f(a)

provided that f ′(a) 6= 0.

Example 0.9

The function f(x) = x2, x ∈ [0,∞) is injective and f−1(x) =
√
x, x ∈ [0,∞).
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The following shows the graphs of x2 and
√
x along with the line y = x all on

the same axes:

y = x2 y = x

y =
√
x

Recall that we can use the Principle of Induction to prove that
d

dx
xn = nxn−1

for integers n ≥ 1.

We can use this together with the Chain Rule to determine
d

dx
x

1

n :

(

x
1

n

)

n

= x ⇒ d

dx

(

x
1

n

)

n

= 1.

Using the Chain Rule we get

d

dx

(

x
1

n

)

n

= n
(

x
1

n

)

n−1 d

dx
x

1

n .

and so

n
(

x
1

n

)

n−1 d

dx
x

1

n = 1 ⇒ d

dx
x

1

n =
1

n
(

x
1

n

)

n−1
if x 6= 0.
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That is,
d

dx
x

1

n = 1

n
x

1

n
− 1 if x 6= 0.

Note that x
1

n is not differentiable when x = 0. This is because the tangent line

to the curve y = x
1

n at the point (0, 0) is a vertical line which therefore has no

defined slope.

0.1.1.1 A function differentiable once but not twice at a point. Let f(x) = x
4

3 .

Then

f ′(x) = 4

3
x

1

3

and

f ′′(x) = 4

9
x−

2

3 = 4

9

1

x
2

3

.

Note that f ′(0) = 0 but f ′′(0) does not exist. That is, this function is differen-

tiable once but not twice at 0.


